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Abstract COVID-19 outbreak has become a global pandemic that affected
more than 200 countries worldwide. Predicting the behavior of this outbreak
has a crucial role in organizing preventive and protective actions, and in im-
proving the decision making process.
The aim of predicting the number of people who contract the virus has so
far been pursued with regression models (exponential, logistics, ...) [5], [6],
[7], but regressions can integrate the variable context only a posteriori. The
regression models are all dependent on their own history, thus, they can not
display anything which did not happen before.
The pandemic infection of COVID-19 presents a transmission behaviour that
is widely changing over time. This is due to the growth of the efficiency in the
detection of infected, for the changes in social distancing measures and for the
widespread use of individual protection devices.
The approach presented in this paper, starting from the definition of simpli-
fied risk assessment framework, aims at designing a probabilistic model for the
virus transmission and detection, keeping into account this context changes,
binding the correct set of variables to them, and at inferring the distribution
for the underlying stochastic variables. This is a key to unlock innovative and
valuable insights from the current events. The model has been built in Gen
[10], a probabilistic programming system, built at MIT and embedded in Julia.
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1 Introduction

In December 2019, Wuhan, a city in China, became the center of the COVID-
19 outbreak. A few months later, the world health organization, declared a
global pandemic contingency. From the beginning of the contingency, more
than 40 Mln confirmed cases and 1 Mln deaths worldwide have been officially
reported [1], [8].
Covid-19 has been considered as the most significant planetary crisis since the
World War-II [4]. COVID-19 is a highly contagious disease with moderate fa-
tality rate. It transmitted among humans via touching contaminated bodies
with viral particles or contacting infected patients [2]. The incubation period
of the disease ranges from 2 to 21 days, and one of the main issues is that it
may transmit from infected people which doesn’t have any symptoms. This
fact poses a crucial attention to the detection efficiency. Severe complications
may occur in elderly persons with other debilitating diseases [4].
Accumulating evidence suggests that various policies on the reduction of social
interactions, and on the massive use of facial masks, slowed down the growth
of COVID-19 infections. All of those rules affect virus spread by changing peo-
ple’s behavior (e.g., stay-at-home order) [3].
In the present paper, we applied the risk assessment techniques (bow-tie anal-
ysis), for describing, at high level, the COVID-19 transmission risk, and for
identifying barriers and escalation factors, then a probabilistic model is devel-
oped, in order to predict the system behaviour, and quantitatively assess the
impact of various policies from the beginning of the outbreak. The predictive
model relies on a generative, contextual and nonparametric approach. Gener-
ative, because it is designed as a model to ’generate’ (or mimic) the observed
behaviour (and not the other way round). Contextual because it tries to
correctly collocate phenomena which have a very different context binding.
Nonparametric because, even if we have introduced a few high-level model
parameters, the model can dynamically and unboundedly infer its complexity
and the number of parameters it needs to fit.

The results have shown that the model is capable of inferring posterior
distributions, as shown by its generative capabilities. This allows for more
ambitious and valuable goals to be achieved in the coming second study phase.

2 The risk model

2.1 Bow-Tie analysis

A ’Bow-Tie’ is a diagram that visualizes the risk you are dealing with in just
one, easy to understand the picture. The diagram is shaped like a bow-tie,
creating a clear differentiation between proactive and reactive risk manage-
ment. It gives an overview of multiple plausible scenarios, in a single picture
and provides a simple, visual explanation of a risk that would be much more
difficult to explain otherwise.
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There are two things that the Bow-Tie does. First, the Bow-Tie analyses chains
of events, or possible accident scenarios. The way it does can be decomposed
in 2 different methods. The first method is the fault tree (FT) which covers
the left side of the Bow-Tie, the second is the event tree (ET) which can be
seen on the right side of the Bow-Tie.
Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are the quantita-
tive part of the risk assessment process.
Fig. 1 depict the developed Bow-Tie.
The two inference models, built with FT and ET techniques, deriving from

Fig. 1 Bow-Tie model for COVID-19 transmission

the Bow-Tie model structure, are described below.

Fault Tree Analysis .
Any sufficiently complex system is subject to failure as a result of one or more
subsystems failing. The likelihood of failure, however, can often be reduced
through improved system design. Fault tree analysis maps the relationship
between faults, subsystems, and redundant safety design elements by creating
a logic diagram of the overall system.
The barriers on the FT side of the Bow-Tie are:

– Confinement. Limiting the social contacts;
– Individual protection. Wearing suitable protection systems;
– Sanification and disinfection of shared areas.

The FTA is depicted in Fig. 2.

Event Tree Analysis .
The overall goal of event tree analysis is to determine the probability of possible
negative outcomes that can cause harm and result from the chosen initiating
event. The escalation factors on the ET side of the Bow-Tie are:



4 Andrea Rapuzzi, Tomaso Vairo

Fig. 2 FT for COVID-19 transmission

– Complication related to the age of the infected person;
– pre-existing medical condition;
– Problems in hospitalization.

The ETA is depicted in Fig. 3.

Fig. 3 ET for COVID-19 transmission

2.2 The transmission model

The possible sources of virus transmission are represented by contact with
infected people (or infected objects, but for objects, the criterion of disinfection
is a sufficient barrier). The contact with infected people is a context strictly
dependent factor. In fact there are 2 circumstances that define the transmission
context:
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– infected people can show the symptoms of the disease (and therefore, from
the transmission point of view, they are no longer so relevant, because in
observation, at home or in the hospital), or they can be asymptomatic,
therefore in the incubation period. The incubation period is very large
(ranges from 2 to 21 days, approximately, with an average value of 5.2
days, and an interval between 4 and7 days with 95% confidence), therefore
the transmission possibilities are very different.

– The government intervened with various gradually increasing restrictive
measures: the closure of schools on February 29, the definition of the first
red zone on March 7, the closure of the nation, as the only red zone, on
March 11, and the complete lock-down on March 21 [9]. THe lock-down
lasted 69 days, and subsequently the restrictions decreased, until October
18, where partial restrictions were reintroduced, to cope with a new increase
in infections, with the substantial difference linked to an increased detection
and tracking capability of the infected. Therefore the chances of coming into
contact with infected people are very different depending on the changing
conditions.

The variables at play are:

– not directly observable: we can observe the number of detected infected
people (in the following just ’detected people’), but we don’t know the
number of infected ones

– correlated to the observed variables, but with a variable and unknown time
shift: it is difficult, once detected an infected person, to know the time at
which the infection occurred (in any case, this data is not registered and
publicly available)

– highly dependant on a changing context: the cultural, social and normative
contexts, to name a few, influence the underlying statistics. Some contexts
are slowly changing, or not at all in the timeframe of an experiment, like
the cultural one. Others present abrupt changes (for example, in the case
of a lockdown).

– noisy: even the observed variables present a high level of noise (e.g. from
their registration process)

3 The predictive model

We have designed our model as a generative one, that is a stochastic process
aimed at generating the same variables we have observed and based on common
sense to model a simplified version of the natural phenomena.

3.1 Population

Our model does not account for total population count, like in an infinite pop-
ulation or at an early pandemic phase. Our model accounts for three different
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and mutually exclusive states for a person: healthy, infected and detected.
Since we model daily people cohorts, not single people, and our model does
not include model counters for healthy people.

In our abstraction, the region of interest is considered closed (there are no
people going out of it or coming into it) with the exception of the initialization
phase (see below).

3.2 Context

We introduce the concept of context, to model in a simplified way, and with
a single abstraction, the sum of all the relevant contexts that can influence the
observed phenomena (like cultural, social and normative context). A single
context is in place at any given simulation time. Changes in context, or con-
text switches, can occur during a single simulation altering the behaviour of
the model. We don’t make apriori assumption about how may context switches
occur (or when) in the course of our simulations, excluding an apriori distri-
bution for the probability of a context switch occurring at any given day.

The variables we have modelled can be classified on the base of their con-
textual binding as:

– steady: a single distribution of the variable is generated for a single simu-
lation run (they don’t change inside a simulation run)

– contextual: a different distribution is generated for any context of a single
simulation run (they change for each context)

– daily: a different distribution is generated for any day of a single simulation
run (they change for each day)

3.3 Influence windows

In a pandemic model like ours, variables at a given time are related to other
variables from the past. Or, to provide a more generative perspective, a vari-
able at a given time impacts the generation of another variable in the future.
For example, the number of people that have been infected today, influences,
directly or indirectly, the number of people that will be infected in the coming
days. But how to model a direct correlation? To account for this, we have
designed weighted influence windows. They are a mechanism to weight the
impact to a variable coming from a past variable. Let’s say that in a given,
unweighted, model, the number of infected people at day n (in) is sampled
from the following distribution:

in+1 ∼ Poisson(f ·
n∑

d=1

id)

In this case (see Fig. 4), the value at day n is affected by the sum of all
the values from the previous days.
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Fig. 4 Unweighted approach

With weighted influence windows (see Fig. 5), we allow the model to ac-
count differently for the values coming from the previous days. The weights of
influence are another variable of the model (a steady one, as we will see).

Fig. 5 Weighted windows approach

3.4 Model variables

The main model variables are discussed in the following sections, grouped by
their contextual binding: steady, contextual and daily.

3.4.1 Steady variables

Influence windows weights for transmission: a set of influence windows weights
at the model level (different for any simulation runs) to account for the capa-
bility of people infected in the past days to infect people on a present day. This
variables set models a characteristic of the virus itself that it is, in statistical
terms, constant in time and across different pandemic scenarios. It is a sort of
virus signature in its ability to transmit from one person to another.
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Influence windows weights for detection: a set of influence windows weights
at the model level (different for any simulation runs) to account for the like-
liness of detecting an infected person. This variables set accounts for a mis-
cellaneous of different factors; some from the virus itself (like its likeliness of
manifesting symptoms driving to medical tests), some from the social context
(like the ability of the health system to proactively detect infected people).
These latter factors are indeed less steady and more contextual, and a simpli-
fication has been made, by considering it steady, to build a simpler model.

3.4.2 Contextual variables

Transmission factor : a contextual factor to model the ability of the virus to
spread under a certain context (e.g. lockdown, social unawareness, etc.).

Detection factor : a contextual factor to model the likeliness of an infected
person detection under a certain context.

3.4.3 Daily variables

Context switch: a daily variable indicating a change in context.

Infected count : a daily variable to model the number of people that have
been infected on a given day. It is the daily amount of newly infected people,
not the cumulative figure. Once inferred for a given day, on a single simulation
run, it remains constant.

Detected count : a daily variable to model the number of people that have
been detected on a given day. It is the daily amount of newly detected people,
not the cumulative figure. Once inferred for a given day, on a single simulation
run, it remains constant. These are also the model observed variables.

Exposed count : a daily variable to model the number of people that have
been infected on a given day and have not yet been detected. It is continuously
updated in the course of the simulation rollout.

Other ancillary variables: for stability and convergence reasons, contextual
variables are not directly modelled at the context level, but at the daily level
and then averaged for each context.

3.5 Transmission and detection model

Given a transmission factor ft for a given context, the transmission influence
function TI(), the count of exposed people at days n − 1, n − 2, .., n − k
(En−1, En−2, .., En−k where k is the extension of the transmission influence
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window), the number of people infected at day n is sampled from the following
distribution:

In ∼ Poisson(ft · TI(En−1, En−2, .., En−k))

Given a detection factor fd for a given context, the detection influence
function DI(), the count of exposed people at days n−1, n−2, .., n−k (En−1,
En−2, .., En−k where k is the extension of the detection influence window), the
number of people detected at day n is sampled from the following distribution:

Dn ∼ Binomial(fd ·DI(En−1, En−2, .., En−k))

Once the number of detected people has been inferred for a given day, the
model assigns the contribution of any past day to the detection (answering
the question: when have, the people detected today, been infected?) inverting
the logic of the detection influence function.

3.6 Initialization

A lot of attention has been dedicated to the correct initialization of the model
state; that is to the value to assign to the infected population on the days
preceding the first observation. Since the model has a recursive nature (i.e.
the data inferred for a given date are one of the inputs for the inference at
later days), having initial populations that are distributed like they have been
generated by the model itself, is key to have a good model convergence. The
solution we choose is to use the model itself to generate initial data. For
the initialization phase, we accounted for the possibility of infected people
coming daily into our region of interest from outside (otherwise no contagion
is possible) in the for of:

∼ Poisson(λin)

where λin is the daily average number of people entering in the region.

3.7 Inference and generation

Once the model is in place, in the form of a stochastic generative function,
Gen performs posterior inference with importance sampling Monte Carlo.

It runs and evaluates several thousand (millions in our experiments) sim-
ulation runs. Given a generated trace, the model also allows the generation of
new artificial scenarios using the inferred (posterior) distributions in a sort of
what-if or possible worlds.
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4 Results and Discussion

The experimental results are based on the dataset made publicly available
from the Italian Presidenza del Consiglio dei Ministri - Dipartimento della
Protezione Civile. To provide for a region both homogeneous and relevant in
size, the data from the Lombardia region, have been used (data points between
the 24th of February, 2020 and the 25th of October 2020). In order to perform
an evaluation of the capability of the model to find posterior distributions that
are coherent with the observed data, we have used the distribution learned in
the traces and used the model as a generative function. Figure 6 shows 5
simulations (coloured lines) generated from a single trace, in comparison with
the observed data (red dots).

Fig. 6 Generated data

Figure 7 shows over 2.000 simulations (footprinted in the grey cloud) gen-
erated by 50 traces, in comparison with the observed data (red dots).

4.1 Coming activities

Even if encouraging, these results, that clearly show the fitness of the model
generative capabilities, are just the beginning of our study. As of this writing,
we are evolving the model (and the experiments) to allow it to produce:

– stable and coherent influence windows for transmission; this will allow us
to fully characterize the capability of the virus to transmit at a given time
distance from the infection.

– stable and coherent context switches for a given scenario; this will allow
to signal a change in context occurring days before a change in observ-
able data trends. This does not mean that the model will predict future
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Fig. 7 Generated data cloud

context changes but that it will assign the correct timing information to
a context change. In a scenario, like the one introduced by the current
pandemic, where the impact of a current decision is delayed (e.g. a couple
of weeks) and noisy, this model could provide a valuable credit assignment
mechanism.

5 Conclusion

In this paper, we have proposed a probabilistic model for COVID-19 trans-
mission and detection. The model different contextual binding levels (steady,
contextual, daily) and its ability to freely and unboundedly allocating context
switches make it capable of simulating a scenario as challenging as the one
presented by the recent pandemic. The current work has demonstrated the
fitness of the model generative capabilities and the coming phase in the study
will concentrate on some important and innovative inference features.
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